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Abstract 

The statistics of intensity data from hemihedrally 
twinned specimens are analyzed in terms of a new 
parameter and are shown to take a simple form in 
both the centrosymmetric and non-centrosymmetric 
cases. This analysis provides a sensitive method for 
determining the twinning fraction. The effects of 
intensity measurement errors on the observed statis- 
tics are discussed. 

Introduction 

When a crystal lattice posesses a rotational symmetry 
axis which is not a symmetry element of the space 
group of the crystal, crystal specimens may grow as 
merohedral  twins. In this case, the reciprocal lattices 
of the different crystal twin domains of the specimen 
exactly overlap. The resulting diffraction intensities 
are given by linear combinations of the true un- 
twinned intensities of reflections which are related by 
the twinning operation. In order to extract the true 
intensities from the observed intensities, one must be 
able to determine the twinning fraction (fractional 
volume of the specimen) for each of the separate 
twins. Several methods have been described for 
approximating the twinning fraction (Fisher & Sweet, 
1980; Murray-Rust, 1973; Britton, 1972; Rees, 1980). 
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A statistical treatment for hemihedral twinning (two 
twin domains) has been developed by Rees (1980). 
In that treatment, the statistical distribution for cen- 
trosymmetric reflections cannot be determined 
analytically. In addi t ion,  the intensities must be nor- 
malized prior to analysis. In the present treatment, 
these problems are avoided by deriving the statistics 
of a parameter H, which is a function of the two 
twin-related intensity measurements in hemihedral 
twinning. In the discussions which follow, we assume 
that the untwinned intensities obey Wilson's (1949) 
statistics and that intensities for untwinned reflections 
are independent. 

Statistics for centrosymmetric reflections 

Let 

H : ( q - p ) / ( q + p )  (1) 

where p and q are intensity measurements of reflec- 
tions related by the twinning operation. (Criteria by 
which weak pairs of reflections may be rejected 
without bias are discussed in the Errors section.) With 
a twinning fraction of a (0 < a < ½), 

p = (1 - ~)1FII 2 + ~ IF212 (20) 

and 

q = ~IF,  I 2 +(1  - ,~)lFd 2 (2b) 
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and 

/4 = ( IF~I : - IF ,  IZ)(1-2~) / ( IF=I  =+IF,I  2) (3a) 
with 

(2a - 1) < H < (1 - 2ce). (3b) 

The structure factor for a single reflection may be 
considered as a random walk of atomic scattering 
factors. In the continuous limit, the centrosymmetric 
structure factor F~, and its twin-related reflection F2, 
are random Gaussian variables (Srinivasan & 
Parthasarathy, 1976) of equal variance and zero mean. 
The joint probability distribution for I Fll and IF21, 
assuming statistical independence, is given by 

P(IFll, IF21) = (4k/7r) exp [-k(IFll  =+lF21~)] (4) 

where k is equal to 1/(2(IF12)). 
From (3a), 

IF=l=lF, l[(1-2,~+ H ) / ( 1 - 2 a - H ) ]  1/2 (5) 

and the cumulative distribution function for H, S(H) ,  
may be obtained by integration of 

S(H) I F't= °° IF21=IF'I[(1--2~+~ )/(1-2~-H)]'/2 
= (4k/Tr) 

IFtl=0 IF21=0 

xexp[-k(IF,12+lF=l=)]dlF=ldlF, I (6) 
in polar coordinates to give 

S(H)=arccos[H/(2a-1)]/ 'n' .  (7) 

The expected cumulative distribution S(H) for 
centrosymmetric reflections is plotted for different 
values of the twinning fraction a in Fig. 1. The distri- 
bution of the parameter H can be calculated from 
observed intensity data and compared with the pre- 
dicted distributions to obtain a value for a. Alterna- 
tively, the average of the absolute value of H or the 
average of the square of H may be calculated over 
all reflection pairs and compared with the expected 
results 

<lnl> = 2(1 - 2a)/~r (8a) 

and 

( (H2 ) )  = ( 1 - 2 t ~ ) 2 / 2 .  (8b) 

Stat i s t i c s  for non-centrosymmetr i c  ref lect ions  

We define H as before, and express p and q in terms 
of the untwinned intensities I1 and I2: 

p = ( 1  - a )I, + otI2 (9a) 

and 

q= all +(1-a) I2  (9b) 

H=(q-p ) / (q+p)=(12 - I i ) (1 -2o t ) / ( I2+  I1) (10) 

with the range for H given by (3b). The non- 
centrosymmetric intensities 11 and/2  obey exponen- 
tial statistics (Srinivasan & Parthasarathy, 1976). The 
joint probability distribution for I1 and/2 is given by 

P(Ii ,I2)=k2exp[-k(II+12)],  (11) 

where k is equal to 1/(IFI2). 
From (10), 

I 2 = I , ( 1 - 2 o ~ + H ) / ( 1 - 2 a - H ) .  (12) 

The cumulative distribution for H, S(H) ,  can be 
obtained by integration: 

11 = 0  12=0 

x exp [ - k ( l ,  +/2)] dI2 dI, 

=[1 + H/(1-2a)] /2 .  (13) 

The expected cumulative distribution S(H) for non- 
centrosymmetric reflections is linear and is plotted 
for different values of a in Fig. 2. Comparison with 
an observed distribution allows a determination of 
a. As before, the average of the absolute value of H 
and the average of the square of H can be calculated 
and compared with the expected results for non- 
centrosymmetric reflections. 

(IHI> = (1 - 2 c t ) / 2  (14a) 

and 
(( n 2)) = ( 1 - 2a )2/3. ( 14b ) 

Errors  

Random errors in the observed intensities lead to 
error in the estimation of the twinning fraction. 
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Fig. 1. Expected cumulative distribution of the parameter H for 
centrosymmetric reflections. (a) a = 0.0, (b) a = 0-1, (c) a = 0.2, 
(d) a =0.3, (e) a =0"4. See text for definitions. 
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Fig. 2. Expected cumulative distribution of the parameter H for 
non-centrosymmetric reflections. (a) a =0.0, (b) a =0.1, (c) 
a =0.2, (d) a =0-3, (e) a =0.4. See text for definitions. 
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However, the signal-to-noise ratio can be improved 
by rejecting intensity pairs if (p+q) is below some 
limit. Rejection of pairs of observations on this basis 
does not bias the expected distribution for S(H). This 
can be~ verified by evaluating the integrals (6) and 
(13) within these new limits. The S(H) take the same 
form as before, multiplied by a scale factor corre- 
sponding to the fraction of the joint probability distri- 
bution within the new limits. 

Errors in the estimation of a may also be intro- 
duced if individual reflections of low intensity are 
rejected (as may occur with an I/tr cutoff). When a 
is small, p may be very small while q is large, or vice 
versa. Omission of reflection pairs of this type will 
result in an overestimation of a. For this reason, an 
I/tr cutoff should not be imposed on data prior to 
determination of the twinning fraction. 

As previously mentioned, we have assumed that 
the true untwinned intensities of two reflections 
related by the twinning operation are statistically 
independent. In crystals where a non-crystallographic 
symmetry operation nearly coincides with the twin- 
ning operation (Rees & Lipscomb, 1980), this 
assumption is not valid. Application of the statistics 
presented here to such a case leads to an overestima- 
tion of the twinning fraction. 

Concluding remarks 

The statistics of a new parameter, H, take a simple 
form for intensity data from a hemihedrally twinned 
specimen, and are sensitive to the twinning fraction, 

a. The observed statistics for H may be compared 
with the predicted statistics, allowing one to obtain 
an accurate value for the twinning fraction. Rejection 
of weak pairs of observations on the basis of the sum 
of the twin-related intensities allows a more accurate 
determination of a, without introducing bias. 

In addition to the application to twinning, H can 
be defined in terms of the intensities of equivalent 
reflections from two different data sets. The values of 
([ HI) and ((H2)) could provide measures of similarity 
between data sets, in a fashion similar to the crystallo- 
graphic R factor. The expected values of these terms 
for unrelated data sets are given by (8a), (8b), (14a) 
and (14b) with a =0.  These terms differ from the R 
factor in that they are not dominated by the reflections 
of highest intensity. Instead, all reflections contribute 
similarly to the average. 

This work was supported in part by NIH training 
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Abstract 

A new type of information on the distribution of 
electron density in crystals of biological macro- 
molecules is proposed. This is a quasihistogram of 
the image of the function of electron density dis- 
tribution at a finite resolution. It is shown how this 
information should be used to restore the values of 
low-angle structure factors whose amplitudes have 
not been measured during X-ray experiments. 
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Introduction 

X-ray analysis of the spatial organization of 
macromolecules implies searching for a function p(r) 
which is the sum of truncated Fourier series 

p ( r ) =  V -~ Y'. F(s) e x p i [ ~ ( s ) - 2 r r ( s , r ) ] .  (1) 
Isl -<. l/drain 

We shall call this function the 'image', or more 
precisely 'image of the function of the electron density 
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